Toward a Fundamental Understanding of the Hilbert-Huang Transform in Nonlinear Structural Dynamics

G. Kerschen\(^{(1)}\), A.F. Vakakis\(^{(2)}\), Y.S. Lee\(^{(3)}\), D.M. McFarland\(^{(3)}\), L.A. Bergman\(^{(3)}\)

\(^{(1)}\) Aerospace and Mechanical Engineering Department (LTAS), University of Liège, Belgium; E-mail: g.kerschen@ulg.ac.be
\(^{(2)}\) Division of Mechanics, National Technical University of Athens, Greece Department of Mechanical and Industrial Engineering (adjunct), University of Illinois at Urbana-Champaign, U.S.A. E-mail: vakakis@central.ntua.gr, avakakis@uiuc.edu
\(^{(3)}\) Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, U.S.A. E-mail: yslee4,dmmcf,lbergman@uiuc.edu

Running title: Fundamental Understanding of the Hilbert-Huang Transform

Keywords: Nonlinear system identification, Hilbert-Huang transform, empirical mode decomposition, slow-flow dynamics.

Abstract

The Hilbert-Huang transform (HHT) has been shown to be effective for characterizing a wide range of nonstationary signals in terms of elemental components through what has been called the empirical mode decomposition (EMD). The HHT has been utilized extensively despite the absence of a serious analytical foundation, as it provides a concise basis for the analysis of strongly nonlinear systems. In this paper, we attempt to provide the missing theoretical link, showing the relationship between the EMD and the slow-flow equations of a system. The slow-flow reduced-order model is established by performing a partition between slow and fast dynamics using the complexification-averaging technique in order to derive a dynamical system described by slowly-varying amplitudes and phases. These slow-flow variables can also be extracted directly from the experimental measurements using the Hilbert transform coupled with the EMD. The comparison between the experimental and analytical results forms the basis of a novel nonlinear system identification method, termed the slow-flow model identification (SFMI) method. Through numerical and experimental application examples, we demonstrate that the proposed method is effective for characterization and parameter estimation of multi-degree-of-freedom nonlinear systems.

*Author for correspondence

1
1 Introduction

Nonlinear dynamics has been studied for a relatively long time, but the first contributions to the identification of nonlinear structural models date back only to the 1970s. Since then, numerous methods have been developed because of the highly individualistic nature of nonlinear systems. A large number of these methods were targeted at single-degree-of-freedom (SDF) systems, but significant progress in the identification of multi-degree-of-freedom (MDF) lumped-parameter systems was realized during the last ten years. However, it is fair to say that there is no general analysis method that can be applied to all nonlinear systems in all instances. For a review of the literature on the subject, the reader is invited to consult the monograph [1] or the recent overview [2].

One of the most successful approaches to nonlinear system identification is the restoring force surface method, introduced in the late 1970s by Masri and Caughey [3]. A parallel approach, named force-state mapping, was developed independently in [4]. The technique is appealing in its simplicity, the starting point being Newton’s second law. It offers a convenient means of determining the functional form of the nonlinearity, because the restoring force can be plotted in a three-dimensional graph against displacement and velocity. A characterization of the elastic and dissipative forces can be obtained by taking a cross section of this surface along the axes where either the velocity or the displacement is equal to zero, respectively. The restoring force surface method can carry out identification of MDF nonlinear systems, but then its key advantage, which lies in the graphical representation of the restoring force, is lost.

Another attractive technique, which uses the Hilbert transform and the slow-flow dynamics for nonlinear system identification, dates back to the early 1990s. SDF systems were first studied in the ‘FREEVIB’ method [5], and the generalization to 2D systems soon followed [6]. That procedure tracks the varying nature of vibration of a large class of nonlinear systems thanks to the extraction of backbone curves from experimental data. Because multicomponent signals do not admit a well-behaved Hilbert transform, the ‘FREEVIB’ method is best exploited for SDF systems or for single-mode resonance of MDF systems. Alternative approaches for slow-flow-based identification were developed, using, for instance, the Wigner-Ville approach [7] and wavelet [8, 9, 10, 11] and Gabor [12] transforms.

Recognizing the limitation of the Hilbert transform for signals with multiple frequency components, Huang et al. introduced the Hilbert-Huang transform (HHT) in 1998 in [13]. It decomposes signals in terms of elemental components, termed intrinsic mode functions (IMFs), through what has been called the empirical mode decomposition (EMD). Its capability to analyze nonlinear and nonstationary data, utilized in several applications such as plasma diagnostics [14], assessment of cardiovascular autonomic control [15], study of ozone records [16] and financial time series [17], makes it potentially superior to the Fourier and wavelet transforms. This is discussed in detail in the monograph [18]. Several applications of the HHT to structural dynamics recently appeared, including damage detection [19, 20], gearbox and roller bearings fault diagnosis [21, 22], aeroelastic flight data analysis [23], and nonlinear vibration characterization [24, 25]. Yang et al. also related the IMFs to the modal properties, providing a clear interpretation of the relationship of HHT to linear dynamics [26, 27]. However, a complete analytical foundation is still lacking in the presence of nonlinear effects.

As shown for the first time in [28], the lack of this fundamental understanding of the HHT in nonlinear structural dynamics can be addressed by linking its outcome to the slow-flow dynamics of the system. The slow-flow model is established by performing a partition between slow and fast dynamics using the
complexification-averaging (CxA) technique, resulting in a reduced dynamical system described by slowly-varying amplitudes and phases. Moreover, these slowly-varying variables can be extracted directly from experimental measurements using the Hilbert transform coupled with the EMD. The comparison between experimental and analytical results forms the basis of a novel parameter estimation method, termed the slow-flow model identification (SFMI) method. The SFMI method can be viewed as an effective generalization of the FREEVIB approach to MDOF systems.

This paper is organized as follows. In the next section, the CxA method is briefly presented. In Section 3, the HHT and the concept of an IMF are introduced; their use for nonlinear signal characterization is also detailed. The intimate relation between the CxA method and the HHT, which forms the basis of the SFMI method, is discussed in Section 4. The SFMI method is then demonstrated using numerical and experimental application examples in Sections 5 and 6, respectively. Finally, the method’s strengths as well as its limitations are outlined in the conclusions of Section 7.

2 Modeling the Slow Flow of Nonlinear Systems: The Complexification-Averaging Method

The slow-flow model of a nonlinear system is established by partitioning its response in terms of slow and fast components, assuming that such decomposition is possible. This is the case when the time series of the dynamics are composed of a number of well separated dominant frequency components, which can be regarded as the fast frequencies of the response; the slow dynamics then provide the slowly-varying modulations of the fast-frequency components. The resulting equations govern the slow-flow variables, namely amplitudes and phases, and describe a dynamical system which is a good approximation to the original system under certain assumptions [29].

There are important motivations for studying the slow flow. First, the slow dynamics can be regarded as the essential dynamics of the system, since they govern the long-term behavior of the response. In addition, being a set of first-order ordinary differential equations, the reduced slow flow is generally easier to analyze than the equations of motion. The slowly-varying amplitudes and phases also represent meaningful features of the response and offer a sharper and clearer characterization of the system dynamics than the original time series.

One possible method for deriving the slow dynamics of structural systems is the classical method of averaging [29]. In this study, a variant of this technique, the CxA method [30], is considered. There are basically four steps in the method: (i) complexification of the equations of motion; (ii) partition of the dynamics into slow and fast components; (iii) averaging of the fast-varying terms; and (iv) extraction of the slow-flow variables from the averaged system.

To illustrate the method, a damped Duffing oscillator

\[\ddot{x} + cx + kx + k_\text{nl}x^3 = 0 \quad \text{with} \quad x(0) = X, \ \dot{x}(0) = 0 \]

is first treated. A complex change of variable, \(\psi(t) = \dot{x}(t) + j\omega x(t) \), is performed,

\[x = \frac{\psi - \psi^*}{2j\omega}, \quad \dot{x} = \frac{\psi + \psi^*}{2}, \quad \ddot{x} = \dot{\psi} - j\omega \frac{\psi + \psi^*}{2} \]
where ω is the frequency which best describes the system response. Equation (1) becomes

$$\dot{\psi} - j\omega \frac{\psi + \psi^*}{2} + c \frac{\psi + \psi^*}{2} + k \frac{\psi - \psi^*}{2j\omega} + k_{nl} \left(\frac{\psi - \psi^*}{2j\omega} \right)^3 = 0.$$

(3)

The dynamics $\psi(t) = \varphi(t)e^{j\omega t}$ is decomposed into slow, $\varphi(t)$, and fast, $e^{j\omega t}$, components such that the motion is approximated by a single frequency component with modulated amplitude and phase. By averaging out the fast-frequency component $e^{j\omega t}$, equation (3) is transformed into

$$\dot{\varphi} + \frac{j\omega \varphi}{2} + \frac{c\varphi}{2} - \frac{jk\varphi}{2\omega} - \frac{3jk_{nl}}{8\omega^3} |\varphi|^2 \varphi = 0.$$

(4)

Due to the averaging process, this complex-valued differential equation represents an approximation to the original dynamics. We then proceed to the extraction of envelope and phase variables by expressing the variable $\varphi(t)$ in polar form, $\varphi(t) = a(t)e^{j\beta(t)}$,

$$\dot{a} + ja\dot{\beta} + \frac{j\omega a}{2} + \frac{ca}{2} - \frac{jk a}{2\omega} - \frac{3jk_{nl}a^3}{8\omega^3} = 0.$$

(5)

The real and imaginary parts of this equation are

$$\dot{a} + \frac{ca}{2} = 0, \quad \dot{\beta} + \frac{\omega}{2} - \frac{k}{2\omega} - \frac{3k_{nl}a^2}{8\omega^3} = 0; \quad a(0) = X\omega, \quad \beta(0) = \frac{\pi}{2},$$

(6)

respectively. Unlike equation (1), the equations describing the slow-flow dynamics may be solved analytically, giving

$$a(t) = X\omega e^{-ct/2} \quad \text{and} \quad \beta(t) = \frac{3k_{nl}X^2}{8\omega c} (1 - e^{-ct}) - \left(\frac{\omega}{2} - \frac{k}{2\omega} \right) t + \frac{\pi}{2}.$$

(7)

Therefore, equations (6) may be viewed as a set of approximate but simplified equations that govern the essential dynamics of the system. The system response predicted by the CxA method is, in final form,

$$x(t) = \frac{a(t)}{\omega} \sin[\omega t + \beta(t)],$$

(8)

which shows that the total phase variable is $\Phi = \omega t + \beta$.

The predictive capability of the analytic expression (8) is assessed in Figure 1 by comparison to the response computed using direct numerical simulation of the equation of motion (1). Four cases are considered, namely (i) a linear system $(k_{nl}, k, X) = (0, 1, 1)$; (ii) a weakly nonlinear system $(k_{nl}, k, X) = (1, 1, 0.2)$; (iii) a strongly nonlinear system $(k_{nl}, k, X) = (1, 1, 1)$, and (iv) a system with an almost essential nonlinearity $(k_{nl}, k, X) = (1, 0, 1)$; the dashpot constant $c = 0.1$. The agreement between predictions and simulations is perfect for the linear and weakly nonlinear systems. For the strongly nonlinear system, the agreement is excellent during the main part of the signal, but deteriorates somewhat at the end of it. For system (iv), the predicted response deviates significantly from the actual response. This example gives an idea about the validity of model (8). In cases (iii) and (iv), additional fast-frequency components (at frequencies 3ω, 5ω, etc.) could be considered in the slow/fast partition to improve the predictive capacity of the analytical model. Another way to improve the predictions of the model is to consider the time scaling

$$\dot{\tau} = \omega(A)$$

(9)

where A is the amplitude of the motion, prior to the application of the CxA method. This is not further discussed here.
By expressing the complex amplitudes in polar form, the slow-flow model is derived.

\[m_1\ddot{x} + c_1\dot{x} + c_{12}(\ddot{x} - \ddot{y}) + k_1x + k_{12}(x - y) = 0, \]
\[m_2\ddot{y} + c_{12}(\ddot{y} - \ddot{x}) + c_2\dot{y} + k_2y + k_{12}(y - x) + k_{nl}y^3 = 0. \]
(10)

The system response should comprise two dominant fast components with frequencies \(\omega_1 \) and \(\omega_2 \). Four complex variables are therefore introduced in this case,

\[\psi_1 = \dot{x}_1 + j\omega_1x_1, \quad \psi_2 = \dot{x}_2 + j\omega_2x_2, \quad \psi_3 = \dot{y}_1 + j\omega_1y_1, \quad \psi_4 = \dot{y}_2 + j\omega_2y_2, \]
(11)
such that \(x(t) = x_1(t) + x_2(t) \) and \(y(t) = y_1(t) + y_2(t) \). Substituting this ansatz into (10) and applying multiphase averaging [31] over the fast-frequency components yields

\[m_1\left(\varphi_1 + \frac{j\omega_1\varphi_1}{2}\right) + c_1\varphi_1 + c_{12}\left(\frac{\varphi_1}{2} - \frac{\varphi_3}{2}\right) + k_1\varphi_1 + k_{12}\left(\frac{\varphi_1}{2j}\omega_1 - \frac{\varphi_3}{2j}\omega_1\right) = 0, \]
\[m_1\left(\varphi_2 + \frac{j\omega_2\varphi_2}{2}\right) + c_1\varphi_2 + c_{12}\left(\frac{\varphi_2}{2} - \frac{\varphi_4}{2}\right) + k_1\varphi_2 + k_{12}\left(\frac{\varphi_2}{2j}\omega_2 - \frac{\varphi_4}{2j}\omega_2\right) = 0, \]
\[m_2\left(\varphi_3 + \frac{j\omega_1\varphi_3}{2}\right) + c_2\varphi_3 + c_{12}\left(\frac{\varphi_3}{2} - \frac{\varphi_1}{2}\right) + k_2\varphi_3 + k_{12}\left(\frac{\varphi_3}{2j}\omega_1 - \frac{\varphi_1}{2j}\omega_1\right) + \frac{jk_{nl}}{8}\left(\frac{-3|\varphi_3|^2\varphi_3}{\omega_1^3} - \frac{6|\varphi_4|^2\varphi_3}{\omega_1^3}\right) = 0, \]
\[m_2\left(\varphi_4 + \frac{j\omega_2\varphi_4}{2}\right) + c_2\varphi_4 + c_{12}\left(\frac{\varphi_4}{2} - \frac{\varphi_2}{2}\right) + k_2\varphi_4 + k_{12}\left(\frac{\varphi_4}{2j}\omega_2 - \frac{\varphi_2}{2j}\omega_2\right) + \frac{jk_{nl}}{8}\left(\frac{-3|\varphi_4|^2\varphi_4}{\omega_2^3} - \frac{6|\varphi_4|^2\varphi_4}{\omega_2^3}\right) = 0. \]
(12)
(13)
(14)
(15)

By expressing the complex amplitudes in polar form, the slow-flow model is derived.

\[m_1\dot{a}_1 + \frac{c_1a_1}{2} + c_{12}\left(\frac{a_1 - a_4\cos(\beta_3 - \beta_1)}{2}\right) - k_{12}\frac{a_1}{2\omega_1}\sin(\beta_3 - \beta_1) = 0, \]
\[m_1\dot{a}_2 + \frac{c_1a_2}{2} + c_{12}\left(\frac{a_2 - a_4\cos(\beta_4 - \beta_2)}{2}\right) - k_{12}\frac{a_2}{2\omega_2}\sin(\beta_4 - \beta_2) = 0, \]
\[m_2\dot{a}_3 + \frac{c_1a_3}{2} + c_{12}\left(\frac{a_3 - a_4\cos(\beta_1 - \beta_3)}{2}\right) - k_{12}\frac{a_3}{2\omega_1}\sin(\beta_1 - \beta_3) = 0, \]
\[m_2\dot{a}_4 + \frac{c_1a_4}{2} + c_{12}\left(\frac{a_4 - a_4\cos(\beta_2 - \beta_4)}{2}\right) - k_{12}\frac{a_4}{2\omega_2}\sin(\beta_2 - \beta_4) = 0. \]
(16)

\[m_1(2\omega_1\beta_1 + \omega_1^2) - \frac{c_{12}a_3\omega_1}{a_1}\sin(\beta_1 - \beta_1) - k_{12}\left(1 - a_3\cos(\beta_3 - \beta_1)\right) - k_1 = 0, \]
\[m_1(2\omega_2\beta_2 + \omega_2^2) - \frac{c_{12}a_2\omega_2}{a_2}\sin(\beta_4 - \beta_2) - k_{12}\left(1 - a_4\cos(\beta_4 - \beta_2)\right) - k_1 = 0, \]
\[m_2(2\omega_1\beta_3 + \omega_1^2) - \frac{c_{12}a_1\omega_1}{a_3}\sin(\beta_1 - \beta_3) - k_{12}\left(1 - a_1\cos(\beta_1 - \beta_3)\right) - k_2 - k_{nl}\left(\frac{3a_1^2}{4\omega_1^4} + \frac{3a_1^2}{2\omega_1^2}\right) = 0, \]
\[m_2(2\omega_2\beta_4 + \omega_2^2) - \frac{c_{12}a_4\omega_2}{a_4}\sin(\beta_2 - \beta_4) - k_{12}\left(1 - a_2\cos(\beta_2 - \beta_4)\right) - k_2 - k_{nl}\left(\frac{3a_4^2}{4\omega_2^4} + \frac{3a_4^2}{2\omega_2^2}\right) = 0. \]

These equations illustrate the benefit of using a slow-flow model in the case of a MDOF system. The response of a specific mode at a particular DOF is readily available, which means that the characteristic time scales of the dominant dynamics at different spatial locations can be determined. For instance, the third and seventh equations of model (16) govern the amplitude and phase modulation of the mode of frequency \(\omega_1 \) at DOF \(y(t) \). This does not imply that the nonlinear modes vibrate independently, because all modal
amplitudes a_1, a_2, a_3 and a_4 are coupled to each other in (16). Any attempt to apply linear modal analysis in this context is certain to fail.

Figure 2 shows the comparison between the system response predicted by the CxA method

$$x(t) = x_1(t) + x_2(t) = \frac{a_1}{\omega_1} \sin(\omega_1 t + \beta_1) + \frac{a_2}{\omega_2} \sin(\omega_2 t + \beta_2),$$

$$y(t) = y_1(t) + y_2(t) = \frac{a_3}{\omega_1} \sin(\omega_1 t + \beta_3) + \frac{a_4}{\omega_2} \sin(\omega_2 t + \beta_4)$$

and the response computed using numerical simulation of the original equations of motion (10) with $k_1 = k_2 = k_{12} = m_1 = m_2 = 1$, $k_{nl} = 2$, $c_1 = c_2 = 0.05$, $c_{12} = 0$ and zero initial conditions except for $x(0) = 1$. Because the nonlinear coefficient and the initial displacement are $O(1)$ quantities, this is a strongly nonlinear system. Satisfactory agreement between prediction and numerical simulation is observed throughout the responses of the two oscillators. The good predictive capability of the CxA method for strongly nonlinear systems was previously demonstrated in [32]. Finally, for illustration, Figure 3 depicts $y_1(t) = a_3/\omega_1 \sin(\omega_1 t + \beta_3)$ and $y_2(t) = a_4/\omega_2 \sin(\omega_2 t + \beta_4)$, the respective contributions of the in-phase and out-of-phase nonlinear modes at DOF $y(t)$.

The purpose of this section was to show that the CxA method has the capability to model the slow-dynamics of strongly nonlinear systems, despite the absence of proof of asymptotic validity [29]. There is no a priori restriction on the number of frequency components that can be taken into account in this formulation, which means that the method can treat without difficulty discrete and continuous flexible systems.

3 Characterization of a Multicomponent Signal: The Hilbert-Huang Transform

The Hilbert transform of a time-domain signal $x(t)$ is defined as

$$H[x(t)] = \frac{1}{\pi} \text{PV} \int_{-\infty}^{\infty} \frac{x(\tau)}{t - \tau} \, d\tau,$$ \hspace{1cm} (18)

where PV denotes the Cauchy principal value of the integral. It can be viewed as the convolution of the original signal with $1/t$, emphasizing temporal locality of $x(t)$.

The Hilbert transform characterizes the signal $x(t)$ through the extraction of its envelope $A(t)$ and instantaneous phase $\Phi(t)$, $x(t) = A(t) \cos(\Phi(t))$ [33]. It is based on the analytic signal $X(t)$ defined as

$$X(t) = x(t) + jH[x(t)] = A(t) \exp[j\Phi(t)],$$ \hspace{1cm} (19)

where $j = \sqrt{-1}$ is the imaginary constant. Notice, at this point, the similarity of this complexification framework to the CxA process examined in the previous section. This is the first indication of the relationship between the two methods, which will be discussed in Section 4. It follows that

$$A(t) = \sqrt{x(t)^2 + H[x(t)]^2} \quad \text{and} \quad \Phi(t) = \arctan(H[x(t)]/x(t)).$$ \hspace{1cm} (20)

The instantaneous frequency is the time derivative of the phase $\Phi(t)$. One intrinsic limitation of the method is that it is only truly suitable for monocomponent signals, i.e., those possessing a single dominant harmonic component. Indeed, straightforward application of the Hilbert transform to the multifrequency signal in Figure 2(b) gives an instantaneous frequency with negative values, a particularly misleading result (see Figure 4).
The limitation of the Hilbert transform when applied to signals with multiple frequency components has been recently addressed through a process known as empirical mode decomposition (EMD) [13]. The basic idea of the EMD is to decompose the original signal in a sum of elemental components, termed intrinsic mode functions (IMFs). To be amenable to the Hilbert transform, each IMF must satisfy two properties: (i) the number of extrema and zero-crossings can differ by no more than one; and (ii) at any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima should be zero. It follows that an IMF is a monochromatic signal, the amplitude and frequency of which can be modulated, unlike harmonic functions. Moreover, the signal can be reconstructed as a linear superposition of its IMFs. Taken collectively, the Hilbert spectra of the IMFs give a complete characterization of a multicomponent signal in terms of amplitude and phase variables, or equivalently in terms of amplitudes and instantaneous frequencies. The approach coupling the EMD with the Hilbert transform has been termed the Hilbert-Huang Transform (HHT). From this discussion it is clear that the HHT provides a multiscale decomposition of the signal in terms of oscillatory functions (the IMFs), each evolving at a different characteristic time scale. As discussed later, the dominant IMFs have a clear physical meaning, in terms of the vibration modes of the considered dynamical system.

Given a signal $x(t)$, the EMD algorithm seeks for its characteristic time scales, which are defined by the time lapse between successive extrema [13]. A systematic means of extracting the different time scales, designated the sifting process, is as follows:

1. Identify all local extrema.
2. Interpolate the maxima and the minima by spline approximations to produce the upper and lower envelopes, respectively.
3. Compute $m(t)$, the mean of the upper and lower envelopes.
4. Compute $h(t) = x(t) - m(t)$.
5. If $h(t)$ is not an IMF, restart the procedure by treating $h(t)$ as the signal.

The component $h(t)$ is considered to be an IMF when the mean $m(t)$ is globally smaller than a prescribed fraction of the mode amplitude, defined as half the difference of the upper and lower envelopes. Because overiterating for better local approximation may be detrimental to the main portions of the signal, larger values of $m(t)$ may be tolerated locally, as proposed by Rilling et al. [34].

Once the first IMF $h_1(t)$ has been computed, the second IMF can be extracted from the residue $r_1(t) = x(t) - h_1(t)$. By construction, the number of extrema in the residue decreases with the number of IMFs, and the iterative process stops when the residue after n iterations $r_n(t)$ becomes a monotonic function. By summing up all the IMFs and the last residue, the complete signal decomposition is obtained:

$$x(t) = \sum_{k=1}^{n} h_k(t) + r_n(t).$$ \hspace{1cm} \text{(21)}$$

Because the EMD explores sequentially the different time scales in the data, going from the finest scale (i.e., the highest-frequency component) to the coarsest scale (i.e., the lowest-frequency component), it is characterized by an inherent multiresolution.

For illustration, the multicomponent signal $y(t)$ in Figure 2(b) is considered. Figure 5 depicts the wavelet transform of this signal, which reveals the presence of two dominant frequency components in the vicinity of
the natural frequencies of the linearized system. The application of the HHT begins with the decomposition of the signal in terms of its IMFs using EMD. The 3 leading IMFs are displayed in Figure 6. The first 2 IMFs are related to the fundamental frequency components and account for more than 99.5% of the total variance in the signal, which confirms that $y(t)$ can be approximated using a two-component signal. The last IMF can be physically interpreted by considering its harmonic content; in particular, its characteristic frequency is equal to 2 times that of the second IMF minus that of the first IMF. This is remarkable, because this component was completely missed by the wavelet transform. The Hilbert transform can now be safely applied to each of the IMFs. The final outcome of the HHT in terms of amplitude and instantaneous frequency of the first two IMFs is shown in Figure 7. The respective contributions of the modes can be easily assessed from Figures 7(a) and (b); that is, both modes seem to participate evenly in the system response. Moreover, because the instantaneous frequencies of both modes decrease with time, the hardening effect of the nonlinearity is evident in Figures 7(c) and (d). Clearly, this represents meaningful structural information, which cannot be obtained from the visual inspection of the time series.

In summary, the HHT represents an important addition to the structural dynamicist’s signal processing toolbox. One inherent shortcoming of the Fourier transform is that it eliminates time dependence and presupposes stationarity. When signals deviate from this condition, the transform outcomes become suspect. Time-frequency representations such as the wavelet and Gabor transforms do not suffer from these limitations and can effectively analyze nonstationary signals. The HHT also produces meaningful representations of such signals. But what makes the HHT so attractive is that it eliminates the need for an a priori defined functional basis, as is generally required for traditional signal analysis techniques (e.g., the Fourier transform expresses a signal in terms of global harmonic basis functions, and the wavelet transform in terms of local basis functions). Being purely data-driven, the HHT precisely determines the most appropriate empirical but adaptive basis. This ability to adapt is crucial, given the individualistic nature of nonlinear systems. Another key feature of the method is that, by utilizing the Hilbert transform, it operates at the scale of one oscillation and is, thus, truly able to track local changes in signals. An extensive comparison of the HHT with other time-frequency analysis techniques is beyond the scope of this paper; the reader may consult references [13, 18] for further details.

4 The Intimate Relation between the Complexification-Averaging and the Hilbert-Huang Methods

The proposed nonlinear system identification technique, termed the slow-flow model identification (SFMI) method, integrates elements of the previously discussed CxA process and the HHT-based slow-flow reduction of the dynamics. Before we proceed to describe the detailed tasks that need to be undertaken in order to develop and test the SFMI method, it is necessary to establish a relationship between the theoretical CxA approach and the computational HHT method. The missing link between these two seemingly distinct approaches was first revealed in [28].

Both approaches share a common basis by expanding a multifrequency signal in terms of a series of simple, monocomponent oscillatory modes, which are related to the dominant fast-frequency components of the signal:

- The CxA method transforms the equations of motion of a nonlinear system into a set of approximate
equations that govern the slow flow. Two equations, one for the amplitude and one for the phase, are derived for each modeled fast-frequency component, governing the slow modulation of that fast harmonic.

- The HHT characterizes a signal through the amplitude and phase of the elemental oscillatory components, the IMFs.

Hence, the link between the methods is clear: the slow-flow model derived using the CxA method corresponds to the equations governing the amplitude and phase of the dominant IMFs computed from the signal by applying the HHT; the CxA method therefore provides a rigorous theoretical framework for the HHT.

To illustrate the relation between both approaches, Figure 8 shows the comparison of the results of the CxA and HHT methods applied to the response \(y(t) \) of system (10) with \(k_1 = k_2 = k_{12} = m_1 = m_2 = 1, k_{nl} = 2, c_1 = c_2 = 0.05, c_{12} = 0 \) and zero initial conditions except for \(x(0) = 1 \). The four top plots depict the temporal evolution of the envelopes of the modeled components in the CxA method, \(y_1(t) \) and \(y_2(t) \), and of the IMFs, respectively. The four bottom plots depict the temporal evolution of the corresponding instantaneous frequencies. An almost complete coincidence of the two sets of results is observed, confirming the link between the two methods.

Based on this theoretical link, the SFMI method is formulated with the following steps:

1. Perform experimental measurements of the transient response of the tested system to obtain a set of local time series at different sensing positions throughout the system.
2. Analyze each individual time series using the wavelet transform to identify the dominant frequency components and their temporal evolution.
3. Apply the HHT to the measured time series.
4. By comparing the wavelet spectrum to the individual plots of the instantaneous frequencies of the extracted IMFs, determine the dominant IMFs of the structural response and categorize them in terms of their characteristic time scales.
5. Based on the slow-flow model of the CxA method, perform a curve-fitting of the measured instantaneous frequencies and amplitudes of the IMFs using a classical linear least-squares procedure; doing so, the physical parameters are identified.
6. Assess the accuracy of the identification process by comparing the measured and reconstructed time series.

One key feature of the SFMI method is that it performs a multiscaled identification, because it employs the characteristic time scales of the dominant dynamics at different phases (time windows) of the system response at different sensing locations.

5 The Slow-Flow Model Identification Method: Numerical Results

To demonstrate the effectiveness of the SFMI method for characterization and parameter estimation of MDOF nonlinear systems, the identification of the 2DOF system (10) is considered. Its slow-flow model (16)
An estimation of the matrix A and the vector b can be obtained by direct application of the HHT, through the computation of the envelopes a_i and phases β_i (and their first derivatives) of the measured IMFs. We note that, if the mass matrix is unknown, the identified coefficients are therefore mass-normalized.

A careful inspection of equation (22) reveals that the elements of matrix A involving the term $\sin(\beta_i - \beta_j)$ must be very small, which might corrupt the curve-fitting process. The reason is that the phase differences $(\beta_3 - \beta_1)$, $(\beta_2 - \beta_4)$, $(\beta_1 - \beta_3)$ and $(\beta_2 - \beta_3)$ should be very close to 0 or $\pm\pi$, because they correspond to either the in-phase or anti-phase mode. The slow-flow model is therefore rewritten by removing those elements from matrix A.

The physical parameters contained in vector x can be identified in a straightforward manner using the Moore-Penrose inverse

$$x = (A^T A)^{-1} A^T b$$

Because the coupling terms in matrix A have been removed, the estimation of damping and stiffness parameters is now completely decoupled. The slow-flow model (23) shows that the damping parameters are directly related to the time derivative of the envelopes a_i, whereas the stiffness parameters are associated with the time derivative of the phases β_i.

The response of system (10) is computed using Newmark’s algorithm for $k_1 = k_2 = k_{12} = m_1 = m_2 = 1$, $k_{nd} = 2$, $c_1 = c_2 = 0.05$, $c_{12} = 0$ and two sets of initial conditions, $x(0) = 0.5$ and $x(0) = 1$, and all other initial conditions set to zero. Because the extrema of the transient responses must be correctly identified in the EMD, a fair number of data points per oscillation is required. In the present study, the sampling frequency is set to 10 Hz. The system response for $x(0) = 1$ is displayed in Figure 2.
Parameter estimation is carried out using the SFMI method, and the results given by slow-flow models (22) and (23) are listed in Tables 1 and 2, respectively. An accurate identification of the stiffness parameters is realized in both cases, but a much better estimation of damping parameters is obtained for model (23). The remaining small errors are attributed to the inherent approximations of the CxA process.

To investigate the robustness of the SFMI method to noise, the displacement signals \(x(t) \) and \(y(t) \) are corrupted by white Gaussian noise, the RMS amplitude of which is equal to 5% of the signal RMS value. Figure 9 depicts the first three IMFs of signal \(y(t) \). Due to the presence of noise, different time scales are mixed in the IMFs. This phenomenon, known as mode mixing [35], renders the use of the Hilbert transform invalid. There are several possible remedies to this, including the implementation of the intermittency test [35] and low-pass filtering of the noisy signals. The latter alternative is chosen here, because it is practical and effective. After low-pass filtering the displacement signals, the HHT can be safely applied. The mean and standard deviation of the estimated parameters are computed for 20 separate identifications (see Table 3). Comparing Tables 2 and 3 shows that the mean value is not affected by the presence of noise. In addition, aside from the nonlinear coefficient \(k_{nl} \) for \(x(0) = 0.5 \), the standard deviation of the parameters is very small. As a result, the SFMI method seems fairly insensitive to the colored (low-frequency) noise in the data which was not filtered out.

6 The Slow-Flow Model Identification Method:

Experimental Demonstration

6.1 Description of the experimental fixture

To support the previous theoretical findings, experimental measurements were carried out using the fixture depicted in Figure 10. A schematic of the system is provided in Figure 11, detailing major components. This fixture realized the system described by equations

\[
\begin{align*}
 m_1\ddot{x} + c_1\dot{x} + c_{12}(\dot{x} - \dot{y}) + k_1x + k_{12}(x - y) &= 0 \\
 m_2\ddot{y} + c_{12}(\dot{y} - \dot{x}) + c_2\dot{y} + k_{12}(y - x) + k_{nl}y^3 &= 0
\end{align*}
\]

and comprised two cars made of aluminum angle stock which were supported on a straight air track. The first car (i.e, the left car in the upper picture in Figure 10) of mass \(m_1 \) was grounded by means of a linear spring \(k_1 \), and the second car of mass \(m_2 \) was connected to the first car by means of a linear coupling stiffness \(k_{12} \). The leaf springs \(k_1 \) and \(k_{12} \) were built to be identical. An essential cubic nonlinearity \(k_{nl} \) was realized by a thin wire with no pretension, as detailed in [36]. A long-stroke electrodynamic shaker was used to excite the first car.

The response of both oscillators was measured using accelerometers. Estimates of the corresponding displacements were obtained by integrating twice the measured accelerations. The resulting signals were then high-pass filtered to remove the spurious components introduced by the integration procedure.

6.2 Separate identification of the system components

Before treating the system of coupled cars using the SFMI method, a separate identification of the different components was carried out:
The first car was disconnected from the second car, and linear modal analysis was performed on the disconnected first car using the stochastic subspace identification technique [37]. The natural frequency and the viscous damping ratio were estimated to be 4.49 Hz and 0.42%, respectively. Because the mass of the first car was known, the stiffness and damping parameters k_1 and c_1 were easily deduced from this modal analysis. A similar procedure was undertaken to estimate coefficient k_{12}.

The second car was disconnected from the first car with the aim of estimating the nonlinear coefficient k_{nl}. To this end, the restoring force surface method [3] was employed. In essence, Newton’s second law was applied to the free response of the second car

$$f_{nl}(y, \dot{y}) = -m\ddot{y}$$

Equation (26) shows that the time history of the restoring force can be calculated directly from the measurement of the acceleration and from the knowledge of the mass. The model

$$f_{nl}(y, \dot{y}) = c_2\dot{y} + k_{nl}y^3$$

was then fitted to the estimate of the restoring force using least-squares parameter estimation.

The values of the parameters identified using this two-step procedure are listed in Table 4. The accuracy of both identifications is evident in Figure 12.

Finally, the wire was disconnected, and a modal analysis of the coupled linear system was performed. The natural frequencies predicted by the previously identified parameters overestimated the measured ones by 3%. To get a better match between measured and predicted frequencies, the estimate of the coupling stiffness k_{12} was decreased to 395 N/m. Rigorously, however, one should introduce a detailed modeling of the connection between the two cars which comprises ball joints (see Figure 11).

6.3 Nonlinear system identification using the SFMI method

The identification of the coupled nonlinear system is now undertaken using the 6-step procedure introduced in Section 4.

The displacement signals computed from the measured accelerations are depicted in Figure 13; the participation of both the in-phase and anti-phase modes in the system response is evident. The wavelet transform in Figure 14 shows two dominant frequency components in the vicinity of the natural frequencies of the underlying linear system. Processing the measured displacements through the EMD, one obtains the dominant IMFs in Figure 15. The 2 leading IMFs account for 99.8 and 99.9% of the total variance of the displacement of the first and second cars, respectively. The Hilbert transform is then applied sequentially to each identified IMF. Figure 16 depicts the instantaneous frequencies of the IMFs of the first car. The frequency of the in-phase mode decreases from 3.8 Hz at $t = 0.5$ s to 2.9 Hz at $t = 5$ s, which is an indication of a strongly nonlinear system. We note that, due to the end effects of the EMD and the Hilbert transform, the first half second of data is systematically discarded in what follows.

The next step in the nonlinear system identification process is the estimation of the system parameters β_1.

Because the measured phase differences $\beta_1 - \beta_3$ and $\beta_2 - \beta_4$ in Figure 17 are close to π and 0, respectively,
the slow-flow model (23) is used. Table 5 summarizes the results of the linear least-squares fitting, and the resulting parameters can be compared to those obtained from the separate identification of the system components:

- The identified stiffnesses \(k_1 \) and \(k_{12} \) differ from the values in Table 4 by a few percent. As discussed in the previous section, a decrease in the value of \(k_{12} \) was expected due to the presence of ball joints in the connection between the two cars.

- The nonlinear coefficient is in close agreement with the value previously identified. Moreover, because \(k_2 \) takes a very small value, the SFMI method is able to retrieve that the nonlinearity is essential; that is there is no linear spring in parallel with the nonlinear spring.

- Estimated damping is somewhat higher compared to that in Table 4.

The predicted and measured displacements are compared in Figure 18, which highlights the predictive capability of the identified model.

The SFMI method was also tested for another impulsive force with an amplitude reduced by 30%. Despite some slight discrepancies, the parameters in Tables 5 and 6 agree well. Coefficient \(c_{12} \) is identified to be negative, but its value can be safely neglected compared to those of coefficients \(c_1 \) and \(c_2 \).

Because a strongly nonlinear system is investigated and because damping estimation is a difficult problem in this fixture, all these results can be considered as satisfactory and demonstrate the effectiveness of the SFMI method.

7 Concluding remarks

This paper focuses on the relation between the theoretical CxA approach and the computational HHT with the aim of bringing to light a better understanding of this time-frequency transform and developing a new nonlinear system identification approach of rather general applicability in nonlinear structural dynamics. A one-to-one relationship between the analytically realized slow-flow dynamics of the system and the IMFs derived directly from the measured time series is demonstrated. Based on the theoretical link between the two approaches, the SFMI method is proposed. This method has several interesting features:

- Because it is based on the HHT, the SFMI method fully embraces both the nonlinearity and nonstationarity of operating dynamical systems. Moreover, a multiscaled identification is performed, because the method identifies the dominant characteristic time scales of the system response and establishes the dimensionality of the dominant dynamics.

- The Hilbert transform gives sharper frequency and time resolutions compared to other time-frequency decompositions. Another distinct advantage is that ridge extraction, which is necessary when using the wavelet and Gabor transforms for nonlinear system identification [8, 12], is avoided.

- Due to its specific time-frequency representation, the SFMI method certainly offers a different perspective on the dynamics. For instance, the computation (and subsequent comparison) of the instantaneous frequencies of the IMFs can reveal possible nonlinear resonant interactions between the system’s components that might be embedded and, thus, hidden in the signal [38].
The SFMI method is a ‘linear-in-the-parameters’ method and does not rely on nonlinear optimization techniques, which greatly facilitates parameter estimation.

Mode mixing may potentially be an issue when using the HHT, especially in the case of noisy data and signals with substantially different modal participations. Use of the HHT intermittency test or appropriate filtering should resolve this difficulty. The fact that the slow-flow model of the dominant dynamics computed through the CxA approach is an approximation of the true dynamics may also be seen as a limitation. However, the predictive accuracy of the slow-flow model can be as good as desired by including the necessary number of harmonic components in the ansatz.

In summary, the numerical and experimental application examples in this study show that the SFMI method yields quite accurate results and offers an effective tool for parameter estimation of MDOF nonlinear dynamical structures.

Acknowledgments

G. Kerschen is supported by a grant from the Belgian National Fund for Scientific Research (FNRS) which is gratefully acknowledged.

The authors are grateful to Patrick Flandrin for making his EMD code freely available at http://perso.ens-lyon.fr/patrick.flandrin (see also [34]).

References

<table>
<thead>
<tr>
<th>k_1 (N/m)</th>
<th>k_2 (N/m)</th>
<th>k (N/m)</th>
<th>k_{nl} (N/m3)</th>
<th>c_1 (Ns/m)</th>
<th>c_2 (Ns/m)</th>
<th>c_{12} (Ns/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact values</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Identification</td>
<td>0.995</td>
<td>0.982</td>
<td>1.000</td>
<td>2.166</td>
<td>0.0915</td>
<td>0.0963</td>
</tr>
<tr>
<td>$x(0) = 0.5$</td>
<td>1.001</td>
<td>0.975</td>
<td>1.006</td>
<td>2.114</td>
<td>0.115</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Table 1: Parameter estimation results for system (10) using slow-flow model (22).

<table>
<thead>
<tr>
<th>k_1 (N/m)</th>
<th>k_2 (N/m)</th>
<th>k (N/m)</th>
<th>k_{nl} (N/m3)</th>
<th>c_1 (Ns/m)</th>
<th>c_2 (Ns/m)</th>
<th>c_{12} (Ns/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact values</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Identification</td>
<td>0.995</td>
<td>0.983</td>
<td>1.000</td>
<td>2.143</td>
<td>0.044</td>
<td>0.047</td>
</tr>
<tr>
<td>$x(0) = 0.5$</td>
<td>1.001</td>
<td>0.976</td>
<td>1.006</td>
<td>2.107</td>
<td>0.047</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Table 2: Parameter estimation results for system (10) using slow-flow model (23).

<table>
<thead>
<tr>
<th>k_1 (N/m)</th>
<th>k_2 (N/m)</th>
<th>k (N/m)</th>
<th>k_{nl} (N/m3)</th>
<th>c_1 (Ns/m)</th>
<th>c_2 (Ns/m)</th>
<th>c_{12} (Ns/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact values</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Identification</td>
<td>0.995</td>
<td>0.982</td>
<td>1.001</td>
<td>2.156</td>
<td>0.044</td>
<td>0.046</td>
</tr>
<tr>
<td>$x(0) = 0.5$</td>
<td>0.004</td>
<td>0.010</td>
<td>0.001</td>
<td>0.305</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Identification</td>
<td>1.001</td>
<td>0.977</td>
<td>1.006</td>
<td>2.103</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>$x(0) = 1$</td>
<td>0.003</td>
<td>0.007</td>
<td>0.001</td>
<td>0.066</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 3: Parameter estimation results in terms of mean and standard deviation for system (10) using slow-flow model (23), 5% noise.
Parameter	Value
Stiffness k_1 | 427.2 N/m
Coupling stiffness, k_{12} | 421.1 N/m
Cubic stiffness k_{nl} | 5.77×10^6 N/m3
Damping c_1 | 0.13 Ns/m
Damping c_2 | 0.05 Ns/m

Table 4: Parameters of the experimental fixture identified using the stochastic subspace identification and restoring force surface methods.

Parameter	Value
Stiffness k_1 | 447.3 N/m
Coupling stiffness, k_{12} | 402.9 N/m
Stiffness k_2 | 4.4 N/m
Cubic stiffness k_{nl} | 6.15×10^6 N/m3
Damping c_1 | 0.39 Ns/m
Damping c_2 | 0.35 Ns/m
Damping c_{12} | 0.01 Ns/m

Table 5: Parameters of the experimental fixture identified using the SFMI method.

Parameter	Value
Stiffness k_1 | 435.3 N/m
Coupling stiffness, k_{12} | 406.3 N/m
Stiffness k_2 | 5.0 N/m
Cubic stiffness k_{nl} | 5.49×10^6 N/m3
Damping c_1 | 0.56 Ns/m
Damping c_2 | 0.60 Ns/m
Damping c_{12} | -0.04 Ns/m

Table 6: Parameters of the experimental fixture identified using the SFMI method (case of lower impulsive force).
Figure 1: Approximation of the response of a SDOF damped Duffing oscillator using the CxA method \((c=0.1)\). (a) \((k_{nl}, k, X) = (0, 1, 1)\); (b) \((k_{nl}, k, X) = (1, 1, 0.2)\); (c) \((k_{nl}, k, X) = (1, 1, 1)\); (d) \((k_{nl}, k, X) = (1, 0.1, 1)\)

Figure 2: Approximation of the response of a 2DOF nonlinear system using the CxA method. (a) \(x(t)\); (b) \(y(t)\).
Figure 3: Contribution of the in-phase and out-of-phase nonlinear modes at DOF $y(t)$. (a) $y_1(t)$; (b) $y_2(t)$.

Figure 4: Application of the Hilbert transform to signal $y(t)$ in Figure 2(b).

Figure 5: Wavelet transform applied to signal $y(t)$ in Figure 2(b).
Figure 6: Application of the EMD to signal \(y(t)\) in Figure 2(b). (a) First IMF; (b) second IMF; (c) third IMF.
Figure 7: Final outcome of the HHT applied to a two-component signal. (a) Envelope of the first IMF; (b) envelope of the second IMF; (c) instantaneous frequency of the first IMF; (d) instantaneous frequency of the second IMF.
Figure 8: Intimate relation between the theoretical CxA approach and the computational HHT method. Left column: HHT results; right column: CxA results.
Figure 9: Application of the EMD to signal $y(t)$ corrupted by white Gaussian noise. (a) First IMF; (b) second IMF; (c) third IMF.
Figure 10: Upper picture: experimental fixture; lower picture: close-up of the second car.
Figure 11: Schematic of the experimental fixture.

Figure 12: Separate identification of the different system components. (a) Stochastic subspace identification of the first car; (b) restoring force surface identification of the second car.
Figure 13: Measured displacement signals. (a) First car; (b) second car.

Figure 14: Wavelet transform of the measured displacement signals. (a) First car; (b) second car.
Figure 15: EMD applied to the measured displacements. (a,b) First car; (c,d) second car.

Figure 16: Measured instantaneous frequencies of the first car. (a) First IMF; (b) second IMF.
Figure 17: Measured phase differences. (a) Anti-phase mode: $\beta_1 - \beta_3$; (b) in-phase mode: $\beta_2 - \beta_4$.

Figure 18: Comparison of the predicted and measured displacements. (a,c) First car; (b,d) second car.